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Summary

Surface error statistics for one statically determi-
nate and two statically indeterminate planar truss
beams with random member-length errors were cal-

culated using a Monte Carlo technique in conjunc-
tion with finite-element analysis. Surface error was
calculated in terms of the normal distance from a
regression line to the surface nodes of the distorted

beam. Results for both single-layer and double-layer
truss beams indicate that there exists a minimum

root-mean-square surface error that depends on the
depth-to-length ratio of the beam. Results also in-

dicate that double-layer beams can provide greater
surface accuracy than single-layer beams, though
at the cost of a disproportionately large number of
additional members.

Introduction

Many future space platforms and reflectors will

require stable and accurate support structures. (See,
for example, ref. 1.) Trusses are good candidates
for many of these support structures because they
are lightweight and stiff, and their static response
is predictable. Also, when carefully manufactured
and assembled, they have the potential for achiev-
ing accurate surfaces. Among the factors that can
influence the surface accuracy of trusses are manu-
facturing tolerances and uncertainties in coefficient

of thermal expansion, both of which can reasonably
be treated as random variables. Therefore, studies of
trusses under the influence of random imperfections
should provide useful information on the design and
fabrication of many space structures that require ac-
curate surfaces.

Planar truss beams are of interest because they
have some of the structural characteristics of three-

dimensional trusses but their analysis involves less
computational complexity. Some previous analy-
ses of statically determinate single-layer truss beams
with random member-length errors are presented in
references 2 and 3. In reference 2, a continuum model

of a statically determinate truss beam was employed
to analyze the effect of zero-mean, random member-
length errors on beam distortion. In that study, the
length-averaged root-mean-square (rms) deflection of
a single-layer truss beam of fixed length was found
to have a, minimum value that depends on the beam
depth. In reference 3, an exact solution was pre-
sented for the standard deviation of nodal displace-
ments in a 21-bay, free-free, statically determinate,

single-layer truss beam with zero-mean, normally
distributed member-length errors.

Since space applications require structural redun-
dancy, there is a need to expand the analysis pre-

sented in references 2 and 3 to investigate stati-
cally indeterminate structures. To address that need,
three types of truss beams were analyzed in the
present paper: single layer, double layer, and modi-
fied double layer (double-layer beam with some mem-
bers removed from one of the layers). The three beam
types are illustrated in figure 1. The two different
double-layer beams were employed to investigate the
correlation between the extent of structural redun-

dancy and the resulting surface error reduction.

The primary purpose of this study was to iden-
tify the geometric parameters that influence the rms

surface error of truss beams containing randomly dis-
tributed member-length errors and to quantify their
influence. Truss beams with pseudorandom length
errors imposed on the members were analyzed using
the EAL finite-element code (ref. 4). The rms sur-
face error for a beam was calculated in terms of the

normal distance from each upper surface node to a
regression line for those nodes. Multiple rms surface
error analyses were performed on nominally iden-
tical beams to produce the surface error statistics.
For an example of the Monte Carlo approach to the
study of surface error in doubly curved trusses, see
reference 5.

Results for single-layer, double-layer, and modi-
fied double-layer beams are presented in the form of
graphs of average rms surface error as a function of

either beam length or beam depth. In addition, in-
formation on the scatter in rms surface error is pre-
sented, along with some information on the residual
strut forces in the statically indeterminate double-
layer and modified double-layer truss beams.

Symbols

A

D

E

L

N

W

strut cross-sectional area

beam depth

Young's modulus

truss beam length

nominal strut length

number of struts in a truss beam

normal displacement of a node
relative to a regression line

strain

O"

A bar

standard deviation

indicates average value over the
beam length

over a quantity indicates arithmetic mean.
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Analysis

Truss Beam Models

The geometries of the three types of planar truss
beams are shown in figure 1. The lower layer of
the double-layer beam is simply the mirror image
of the upper layer after the removal of two core
members, or struts, from each end. The modified
double-layer beam is derived by removing alternate
pairs of diagonal struts from the lower layer of the
double-layer beam. Pin-ended joints are assumed
throughout all the beams. Also shown in figure 1
are formulas for the total number of struts in each

beam as a function of the ratio of beam length, L,
to strut length, t. Table I contains a list of member
properties, some of which are taken from reference 6.
The tubular graphite/epoxy struts were assumed to
have a nominal length of 2 m and a diameter of

varied independently to determine their influence on
the rms surface error of the truss beams. While the

length parameter was varied, the beam depth was
held constant, and while the beam depth was varied,
the beam length was held constant. Similar para-
metric studies were carried out on all three types of
truss beams.

Best-Fit Surface Error Calculations

Root-mean-square surface error, Wrms, was de-
fined in terms of the normal distance from a refer-

ence line to the upper surface nodes of the distorted
beam. For comparison with results from reference 2

for simply supported beams, the reference line sim-
ply joined the upper surface nodes at each end of the
beam. For free-free beam comparisons, the reference

line was a least-squares best-fit line (regression line)
for all upper surface nodes (see fig. 2). With the dis-
placement of the ith node normal to the reference

2.54 cm and are typical of those considered in some
envisioned applications. (See, for example, ref. 1.) line denoted by Wi, the rms displacement is given by

Strut Length Errors

The factors most likely to cause variability in
the nominal length of a composite strut are manu-
facturing errors and uncertainties in the coefficient
of thermal expansion. On the _sumption of Care:
ful manufacturing practices: andthe use of material
property data contained in reference 6, the uncer-
tainties from these and all other sources were judged
to be approximately equivalent to a length tolerance
of +0.00254 cm (+0.001 in.) for a 2-m-long strut.
This length tolerance was take n as 26, for the as-
sumed zero-mean, standard normal distribution of

member-length errors. Consistent with the analysis
of reference 2, member-length errors were assumed to

be proportional to member length; hence, they were
treated as error strains. However, on the assumption
that errors greater than 20 would be detected during
careful inspection, the corresponding "tails" of the
normal distribution were cut off before length errors
were assigned to the various members. The pseudo-
random member-length errors were generated by use
of a commercially available computer library routine.

Finite-Element Modeling

The finite-element program EAL (ref. 4) was em-
ployed to analyze the distorted truss beams. All the
beams were composed of rod elements with pinned
joints and were simply supported at the lower end
nodes. The pseudorandom member-length errors
were imposed on the individual struts as thermal
strains, and the resulting computed nodal displace-
ments were used in the calculation of surface error, as
well as of the residual strut forces in the statically in-

determinate beams. Two geometric parameters were

Wrms= EW}
i--I

where N is the number of surface nodes,

A set of 500 Wr_s analyses (runs) was executed
for each combination of values for L/I and D/t. The
average Wrms value for each set of 500 runs was
calculated from

Wrms -

1 500

500 E Wrms,j
j=l

The standard deviation of nodal displacement was
obtained from

I 1 500=  (wj - w)2.
j=l

h

where W is the mean value of Wj from a set of
500 runs. In addition, the standard deviation of
the Wrms values, aW, was computed for each set =of

500 runs to obtain a measure of the scatter in Wrms.

Results and Discussion

Some information on O_e performance of the

Monte Carlo approach in this study is given in ta-
ble II. Five different seeds were chosen arbitrarily
and supplied to the random number generator. The
resulting pseudorandom numbers were used to calcu-

late 500 Wrms values for a truss beam with L/g = 20
and D/t = V_/2. The cumulative average, Wrms,
of these values after 100, 300, and 500 runs is listed
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in table II along with the corresponding seeds. For
the five seeds, the difference between Wrms results
after 100 runs and those after 500 runs ranges from
1.2 percent to 10.3 percent. The 10.3-percent change
in Wrms for the last seed may suggest some sensitivity
of the random number generator to the choice of seed.
However, the sample of five values in table II is too
small to support any strong conclusions. In the fol-
lowing, all the Wrms results have been nondimension-
alized by Lae, where L is the total length of the beam,
and ac is the standard deviation of the truncated nor-
mal distribution of length-error strains. Each of the

values was computed from 500 runs.

Single-Layer Beams

Figure 3 contains a graph of Wrms/Lae for a

single-layer beam of fixed depth ratio D/l = v_/2
whose length ratio L/g ranges from 10 to 100. Also
shown is a plot of (Wrms + aw)/Lae, where aw
is the standard deviation of the 500 Wrms values.
The increase in Wrms with an increase in the length
ratio is due primarily to the increase in the number
of surface members, whose errors promote beam
curvature. Although the number of core members
also increases, errors in their length cause a shear
deformation that has a relatively small effect in a
long beam. The (Wrms + o'w)/Lae curve, which is
approximately 50 percent higher than the Wrms/Lae
curve, gives an indication of the scatter among the
500 Wrms values.

Figure 4 contains a graph of Wrms/Lcre for a
single-layer truss beam with L/E = 40 and with

depth ratio D/t ranging from v_/2 to 5. In this case
the number of members remains constant; therefore,

only the length ratio of surface members to core
members affects Wrms. The minimum Wrms point
is approximately at D/_ = 2.75. Small values of
D/_ cause relatively large values of Wrms because
surface members, which become long relative to core
members, contribute primarily to beam curvature.
As D/E increases beyond 2.75, Wr_ increases only
gradually because core members, which become long
relative to surface members, contribute to shear-
type deformation rather than beam curvature. The
shear-type deformation has a less profound effect
than beam curvature on overall deflection. The

(Wrms + aw)/Lac curve is approximately 40 percent
above the curve for Wrrns/Lo'e at the minimum point.

Figure 5 presents a comparison of results for
single-layer beams of fixed depth ratio D/l = v/-3/2
with length ratio L/E ranging from 3 to 100. The
curve from reference 2 represents the exact solu-
tion for the length-averaged mean-square nodal dis-
placement of a single-layer simply supported truss
beam (assumed to have many members, thus mod-

eled as a continuous uniform beam) with normally
distributed random member-length errors. The
curve from the present study is for pseudorandom
member-length errors with a =k2a-bounded normal
distribution. The comparison between the present
results and those of reference 2 shows good agree-

ment, indicating that truncation of the length-error
distribution in the present calculations was of little

consequence.
Figure 6 presents a comparison of results from ref-

erence 3 and from the present study for a single-layer
truss beam with D/_ = v_/2 and L/_ = 21. The re-
sult from reference 3 is the exact solution for rms

surface nodal displacement of the truss beam with
normally distributed random member-length errors.
Agreement between the present results and those of
reference 3 is good. Small differences between the
two are probably due, in part, to the fact that the
present calculations are based on the normal distance
from the best-fit line to the nodes, while those in
reference 3 are based on vertical distance.

Double-Layer Beams

Figure 7 contains a graph of Wrms/L_e for a
double-layer truss beam with D/_ = _ and L/l

ranging from 20 to 100. This truss beam is twice
as deep as the single-layer truss beam. Since this
beam is statically indeterminate, member-length er-
rors give rise to internal forces. The trend shown in

figure 7 is similar to that for the single-layer beam
(fig. 3), where Wrms increases because the growing
number of surface members causes greater beam cur-
vature. The (Wrms + aw)/Lo'e curve on this graph
is approximately 50 percent above the mean curve.

Figure 8 contains a graph of Wrms/Lae for a
double-layer truss beam with L/! = 40 and D/g

ranging from v/3 to 9. A minimum value of Wrms
occurs approximately at D/l = 4.5. This behav-
ior is similar to that for the single-layer truss beam

(fig. 4), where small D/_ values promote beam curva-
ture effects and large D/t values promote shear-type
deformation. The (Wrms + aw)/Lcrc curve is again
approximately 40 percent above the Wrms/Lae curve
at the minimum point.

Modified Double-Layer Beams

In figure 9, Wrms for a modified double-layer truss
beam with D/g = V_ is plotted as a function of

L/t, which ranges from 20 to 100. Alternating pairs
of core members have been removed, so that lower
surface members are twice as long as upper surface
members. The trend is similar to that in figures 3
and 7, where Wrms increases steadily with L/I. The

(_r_ + aw)/Lae curve is approximately 50 percent
above the Wrms/Lac curve.



Figure 10containsa graphof Wrms/Lo'e for a
modified double-layer truss beam with L/t = 40, and

with D/t ranging from v_ to 9. A minimum Wrms
point was achieved approximately at D/g -- 4. This
result is similar to those in figures 4 and 8 for the

single-layer and double-layer beams, where smaller
D/g values increase Wrms by promoting beam cur-
vature effects, while larger D/g values increase Wrms

primarily because of shear-type deformation. As be-
fore, the (W----r_ms+ aw)/La_ curve is approximately
40 percent above the mean curve at the minimum

point.

Comparison of Beam Types

Figure 11 contains graphs of Wrms/La_ for the

three types of truss beams with D/! = _ and L/_
ranging from 20 to 100. Note that the depth of this
single-layer truss beam is twice that of the single-
layer beam in figure 3. For this value of D/t, there is
little difference between the single-layer and double-

layer beam results. Furthermore, Wrms is actually
greater in the modified double-layer bea,n than in the
single-layer beam. Considered alone, this result could
lead to an erroneous conclusion about the effects of

structural redundancy on rms error.
A clearer perspective on this issue is provided

by figure 12, where graphs are shown of the mini-
mum Wrins values for the three types of truss beams
with L/_ = 40 and D/l ranging from v/3 to 9. The
minimum Wrms value for the modified double-layer

beam is approximately 16 percent lower than that
for the single-layer beam. This modest improvement
is achieved with a 37-percent increase in the num-
ber of struts. The full double-layer beam achieves a
35-percent reduction in Wr_ with a corresponding
73-percent increase in the number of struts. There-
fore, both double-layer beams are capable of greater
surface accuracy than that of the single-layer beam.
However, on the basis of strut count alone, both
double-layer beams appear less attractive in compar-
ison with the single-layer beam. Of course, in ad-
dition to surface accuracy and strut count, a beam
design for a particular application would likely be im-
pacted by other considerations, for example, number
of joints, manufacturing and construction costs, and
assembly time.

Residual Strut Forces
, =

In addition to rms surface errors, member ax-
ial forces in the statically indeterminate double-layer
beam were calculated for L/_ = 40 and eight values

of D/g ranging from _ to 9. The largest calcu-
lated member force was 173 N, and the average of
the maximum values from each of the eight analyses

4

was 164 N. As a rough estimate of the likelihood of
member buckling due to residual forces, the largest
member force was compared with the Euler buckling
load for the longest member in the optimum double
beam (D/t = 4.5) with simple supports assumed.
The largest member force was found to be about
28 percent of the Euler load, a result which indicates
that member buckling due to residual forces in the
optimum beam would be quite unlikely for the range
of member-length errors assumed here. Of course,
the residual strut forces give rise to other consider-
ations, such as joint preload and creep in bonded
joints, which are outside the scope of the present

report.

Concluding Remarks

A Monte Carlo approach combined with finite-
element analysis has been used to calculate surface-
error statistics for three types of truss beams dis-
torted by pseudorandom member-length errors. One
beam was a single-layer, statically determinate struc-
ture, while the other two were variations of a stati-
cally indeterminate double-layer design. Length and
depth parameters were varied independently to assess
their influence on the surface error of truss beams.

For beams of fixed depth, the rms surface error was
seen to increase steadily with beam length. How-
ever, beams of fixed length were found to have a
depth at which rms surface error was a minimum.
In general, the statically indeterminate double-layer
beams showed potential for greater surface accuracy,
though at the expense of a disproportionately greater
number of struts. For example, the full double-layer

beam of optimum depth employed 73 percent more
struts than the single-layer beam to achieve a 35-
percent reduction in rms surface error. Also, limited
calculations of member axial forces in some statically
indeterminate beams indicate that member buckling
due to residual forces would be quite unlikely for the
range of member-length errors considered.

NASA Langley Research Center
Hampton, VA 23665-5225
January 12, 1990
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Table I. Truss-Member Properties

Cross-sectional area, A, cm 2 (in 2) .......

Member diameter, cm (in.) ..........

Member wall thickness, cm (in.) .......

Nominal member length, i, cm (in.) ......

Coefficient of thermal expansion,

per °C (per °F) ..............

Young's modulus, E, N/cm 2 (lb/in 2) .....

1.14

2.54

15

2O0

0.18 xlO -6

20.68 x 106

(o.18)

(1)

(0.06)

(78.74)

(0.1 xlO -6)

(30 ×106)

Table II. Statistical Study of Monte Carlo Technique

Seed

27712
222222
111111
191919
876374

Average .........

Variation

about average,
percent .........

100 runs

0.00872
.00908
.00928
.00918
.00933

0.00912

-4.6 to 2.3

Wr iiLs

300 runs

0.00858
.00905
.00899
.00878
.00883

0.00885

-3.2 to 2.3

500 runs

0.00862
.00893
.00891
.00875
.00846

0.00873

-3.2 to 2.2

Variation between

100 and 500 runs,
percent

1.2
1.7
4.2
4.9

10.3

m__

=
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Figure 1. Sketch of three types of truss beams.
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Figure 3. Effect of length of single-layer constant-depth truss beams on rms error. D/_ = v_/2.
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Figure 4. Effect of depth of single-layer truss beam on rms error. L/g = 40.
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Figure 5. Effect of length of single-layer constant-depth truss beams on the length-averaged mean-squared
displacement. D/t = v'_/2.
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Figure 8. Effect of depth of double-layer truss beam on rms error. L/£ = 40.

11



.8

.6

Wrms .4

Lo E

.2

Mean +

I | I ! I

0 20 40 60 80 100

Length ratio, LE

Figure 9. Effect of length of modified double-layer constant-depth truss beam on rms error. D/l = v/'3.
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Figure 10. Effect of depth of modified double-layer truss beam on rms error. L/g = 40.
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Figure 12. Effect of depth of three truss beams on rms error. L/_ = 40.
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